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The HitSeed Sensor Computers can collect and 
transfer sensor data for Neural Network training and 
for executing the trained Neural Network in the 
device for embedded classifications.

This presentation demonstrates how the DEBARE 
smart glove classifier was set up and developed 
using the HitSeed Sensor Computer.



Project DEBARE
• A Horizon 2020 ATTRACT project with Aalto 

University https://attract-
eu.com/showroom/project/deep-learning-
based-activity-recognition-on-the-edge-debare/

• HitSeed Sensor Computer attached to a Smart 
Glove prototype developed in Aalto

• Runs neural network classifiers for recognising 
gestures and human activities in the glove

• Uses embedded TensorFlow Lite Micro
• Sends gesture classification results over 

Bluetooth LE and/or a LTE cellular data 
connection to a nearby computer, cloud server 
or VR/AR headset



Attaching the Glove to the Sensor Computer
• A small Printed Circuit Board was 

developed for connecting the Glove and 
the Sensor Computer

• The board schematics on the right add a 
measurement front end to the glove 
sensors, a USB connector for charging the 
Li-Po battery and soldering pads for an 
optional battery (e.g. 2x AAA) container

• The intelligence resides in the Sensor 
Computer board

Aalto glove 
prototype DEBARE board

Sensor Computer (SC2) 

DEBARE 
board 
schematics



Sensors Used in DEBARE

6 smart textile 
sensors

• One for each finger measuring the 
stretch: how much the finger has bent

• One for palm, measuring pressure
• The Sensor Computer powers these 

sensors and measures the varying 
resistance as a voltage value

• These sensors are red at 100 Hz 
sampling frequency 
(configurable 1 Hz – 1000 Hz)

Advanced 6-axis 
motion sensor

• Used for hand orientation and motion 
gesture detection

• Accelerometer and gyroscope data 
from the sensor is red at 104 Hz 
sampling frequency 
(configurable 1.6 Hz – 3333 Hz)



Steps of Classification
1. Configure sensors for sampling and set up filtering.
2. Set data scaling and normalisation parameters.
3. Combine several sensor inputs to a time series 

buffer of values for Neural Network processing.
4. Load a TensorFlow model and feed the data buffers 

for embedded Neural Network classification:
1. Run Neural Network inference. Output is a list of 

probabilities for the trained classifier alternatives.
2. Format the results and send over Bluetooth LE or 

LTE data connections. Data is sent to a server, a 
nearby computer or a VR/AR headset.

5. Alternatively collect the buffer data for offline 
supervised learning of a Neural Network classifier. 
Training data can be stored in a microSD memory 
card or sent over the LTE connection.



Step 1: Embedded Data Normalisation

Above: raw sensor data. Below: pre-processed and normalised for Neural Network processing.

Textile sensor measurements: bending all fingers first, then one or two fingers at a time.



Sensor Data Fusion →TensorFlow → Result

ADC data from 6 textile sensors

100 Hz
0 .. 1.8V

Acceleration data: X, Y Z

104 Hz
+/-16g

Rotation data: X, Y Z

104 Hz
Rounds Per Second

12 sensor values 

Classifier result: 
probabilities of 
each pose or 

gesture

16 samples

A “fusion buffer” of 16 * 12 = 
192 sensor values is processed 

with TensorFlow every 160 
milliseconds

The embedded calculation with the of the different DEBARE 
R&D networks took between 3ms and 70ms per prediction. 

The network model of these example graphs uses on average 
3.5 mW in continuous prediction of real-time data. 



Access the Embedded Results from a PC
• The DEBARE Sensor Computer sends a classifier 

result to Bluetooth LE every 160 milliseconds.
• Reliable and compatible (Windows, Mac, Linux) 

way to read the Bluetooth data is to use a €10 
USB dongle with Python scripts. Details and  code 
available from https://sc.hitseed.com.

• The Python script can
– read the data from Bluetooth,
– print the result in real-time,
– store the values to a .csv file or 
– pass the data for processing the result with another TensorFlow 

network (typically a LSTM) and print the results.

python3 dongle/deb_output.py
--port=/dev/tty.usbmodemE8D77E923BE52 
--verbose
--confidence=0.95

python3 dongle/deb_output.py
--port=/dev/tty.usbmodemE8D77E923BE52 
--floats=6 
--floats_from_byte=6 



Classifier Results
The python script uses the USB dongle to receive the embedded classification as 
a list of probabilities for each class. This Neural Network detected which finger(s) 
in the glove were bent:

The 160 millisecond
predictions as a graph:



DEBARE Hardware Uses Sensor Computer 2
Sensor Computer 2 (SC2) is the main product of HitSeed: the IoT 
“brains” used in several commercial products. 
SC2 contains a microphone and an advanced motion sensor. It is 
often attached to another board for added sensors and actuators. 
SC2 runs the software that measures and sends data, it has 
memory, non-volatile storage, programmability and it communicates 
with Bluetooth LE and with LTE (4G) NB-IOT/CAT-M1. 

SC2 weights 10 grams. It has several powering options including 
primary and rechargeable batteries and energy harvesting. The
DEBARE device in idle mode uses only 304 μW – as a comparison 
a Raspberry Pi Zero uses 400 mW in idle mode.
There is a smaller and lighter variant Sensor Computer 1 (SC1) 
available for a smart glove in production, without the LTE data 
connectivity. For R&D and for training data collection the larger SC2 
variant with a memory card holder has been easier to use.



Programming the Sensor Computers

The HitSeed Sensor Computers 
are configured using the Lua 
script language. The Lua 
programs can be updated to the 
device over the air.
Tutorials of the Sensor Computer 
programming are available in 
https://sc.hitseed.com.



Training a TensorFlow .tflite Model

To collect the training data files and 
to use the files to train a TensorFlow 
model you should follow the steps in 
the next few slides.



Outline a typical development of a Machine Learning classifier

• Collect a few 10 - 60 second activity samples of each activity, gesture or state
• Collect minimum 5 sample files of each gesture to be trained

1. Training data collection with a SC

• Use HitSeed-provided tools to process the training data
• Train a Tensor Flow Lite model in a reasonably fast PC or server

2. Neural Network training

• Upload the trained .tflite model to a Sensor Computer
• Create a script program that runs in the Sensor Computer and

• Passes sensor data to the TFL model for classification
• Formats and sends the classifier results

3. Run classifier in a Sensor Computer



Training Preparations
1. To install a Python interpreter with 

Tensorflow and Keras follow the 
instructions from tensorflow.org

2. Login to http://sc.hitseed.com to 
download the training scripts

3. More detailed instructions for NN 
training and for Lua programming with 
Sensor Computers are available in 
http://sc.hitseed.com

http://sc.hitseed.com/
http://sc.hitseed.com/


Training: Inspect and Clean Up Data
• Copy the training data files from a microSD to 

your computer. Place the files in 
subdirectories named as the pose or gesture 
to be classified. 

• You can later choose which subdirectories to 
include in each training run.

• Inspect the files one by one by plotting the 
contents with commands like on the right.

• Verify what data you want to include in the 
training. Move misplaced files to correct 
subdirectories and remove any undesired 
files. The script can also remove samples 
from the beginning and from the end.

python3 fusion_parse.py */* --plot_adc
python3 fusion_parse.py */* --plot_acc
python3 fusion_parse.py */* --plot_gyro



Training: Prepare Data for Training
• Convert the verified fusion buffer binary files 

as .csv files in the directory specified as the 
--csv_to_dir argument.

• If needed, split the files with 
--csv_split=<numberoflines> to get at 
least ten .csv files for each pose/gesture.

• Run these training data preparation scripts. 
List the subdirectory names you want to 
include in this training. The order of the 
directories has no impact here.

• Rerun these last two commands for changing 
the subdirectories included for training.

python3 fusion_parse.py */* --csv_to_dir=../csv
--csv_split=1000

cd ../csv

python3 ../../train/data_prepare.py --inputs=12 
index middle palm pinky ring thumb

python3 ../../train/data_split.py index middle
palm pinky ring thumb



Training: Run the TensorFlow Training
• Use the train.py script from http://sc.hitseed.com for 

TensorFlow training. 
• train.py uses the learning/validation/test data prepared with 
data_split.py

• Please refer to Tensorflow documentation about the 
parameters like learning rate, epochs and dropout 
parameters.

• In the command line list the same subdirectories for training 
as in the previous page. The order of the category names 
here defines the category order in the output.

• As a starting point we recommend using Keras for 
describing the network to train. It is possible to use also all 
other forms that TensorFlow can convert to a .tflite model.

• When the TensorFlow training run is successful it will store 
in the current working directory a .tflite file optimised for 
embedded execution.

python3 ../train.py
--model=CNN_ADC 
--samples=16 
--cnn_nodes=6 
--dropout_input=0.2 
--dropout_hidden=0.0 
--learning_rate=0.001 
--steps_per_epoch=5000 
--epoch=20
pinky ring middle index thumb palm

http://sc.hitseed.com/


Easy Start Without Embedded Programming

HitSeed creates ready made data 
aggregations designed for classifier 
training and execution.
We call this feature classformation
(CFORM): Information about the 
sensor data aggregated to a form that 
is optimised for classifier training.



CFORM Example from the DEBARE Data

CFORM

Reduction to 
3/16 = 19% of the 
original data size 

TensorFlow 
(1,16,12,1)

TensorFlow 
(1,1,12,3)

These graphs illustrate only the ADC “finger” part of the DEBARE data



Classformation for Gestures and Poses
• The first CFORM feature CFORM/Gesture is developed for classifiers of 

dynamic human gestures and static poses.
• We take 16 samples of sensor data and calculate three numbers that represent the 

same information in more compact form. 
– The aggregate data is 19% in size and compact enough to be transferred over 

Bluetooth LE connection in real-time. 
– The new CFORM data can be saved to a microSD card for training data collection. 

Alternatively the training data files can be collected in real-time in a PC with a USB 
dongle.

– A separate Neural Network classifier can be run in a PC or a mobile phone that 
consumes the real-time CFORM data sent from a Sensor Computer over Bluetooth LE.



CFORM/Gesture Data Visualised

TensorFlow 
(1,16,12,1)

16 samples

A “Fusion Buffer” of 16 * 12  
sensor values every 160 

milliseconds

Usually better classifier results from CFORM data, with less memory and power consumption.

CFORM

continuous flow of “1 sample”

“1 sample” every160 milliseconds. 

A window of 16 new samples fills every 
2.56 seconds.

19% of the original data size with better 
signal/noise ratio for gesture detection. 

TensorFlow 
(1,1,12,3)



Training Classifiers for the CFORM/Gestures
• Easiest way to start training classifiers with HitSeed Sensor Computers is to 

take a SC configured for sending the CFORM/Gestures data to Bluetooth. 
– Use a USB dongle and Python scripts to collect CFORM training data to a PC.
– Train a TensroFlow classifier using the collected compact CFORM data.
– Load the trained TensorFlow model with the dongle-reader Python script running 

in the PC and test the NN model against the real-time data received over 
Bluetooth.

• The current version of the TensorFlow Lite Micro cannot yet run LSTM 
networks. When RNN-type networks or subgraphs are used for in 
classification, currently this kind of split setup is needed where the more 
complex classifier runs in a PC or a mobile phone.



Embedded Use of CFORM/Gestures
• The CFORM outputs can be sent for embedded TensorFlow inference from the 

Lua code. Up to 2.56 second gestures could be classified with a 16-sample CNN in 
the Sensor Computer. 

• The CFORM transformation helps reducing the memory footprint of the classifier 
model as well as the RAM memory needed for TensorFlow Arena. The calculation 
speed and the power consumption improves – allowing more complex embedded 
NN topologies.

• If the trained NN uses only a fully connected or a CNN network and has 
<3000 trainable variables, it can be downloaded to the Sensor Computer and run 
the classifications fully locally.

• The CFORM model makes it easy to start training classifiers with full TensorFlow 
functionality – and the gradually trim the complexity of the model to find out how 
many separate gestures can be reliably classified in embedded-only 
implementation.



• www.hitseed.com/platform
• info@hitseed.com

HITSEED.COM


