& HitSeed

Machine Lear
A SENSOR COMP

Collecting sensor data for trainin
and running embedded classifie

SEPTEMBER 2020

The HitSeed Sensor Computers can collect and
transfer sensor data for Neural Network training and
for executing the trained Neural Network in the
device for embedded classifications.

This presentation demonstrates how the DEBARE
smart glove classifier was set up and developed
using the HitSeed Sensor Computer.

& HitSeed

Project DEBARE)

ATTRALT
» A Horizon 2020 ATTRACT project with Aalto
University https://attract- .
eu.com/showroom/project/deep-learning- @ HitSeed

based-activity-recognition-on-the-edge-debare/

» HitSeed Sensor Computer attached to a Smart
Glove prototype developed in Aalto

* Runs neural network classifiers for recognising
gestures and human activities in the glove

» Uses embedded TensorFlow Lite Micro

» Sends gesture classification results over
Bluetooth LE and/or a LTE cellular data
connection to a nearby computer, cloud server
or VR/AR headset

& HitSeed

Attaching the Glove to the Sensor Computer

Aalto glove

« A small Printed Circuit Board was prototype DEBARE board

developed for connecting the Glove and
the Sensor Computer

* The board schematics on the right add a
measurement front end to the glove
sensors, a USB connector for charging the
Li-Po battery and soldering pads for an
optional battery (e.g. 2x AAA) container

» The intelligence resides in the Sensor
Computer board

DEBARE
board
schematics

& HitSeed

Sensors Used in DEBARE

6 smart textile
Sensors

* One for each finger measuring the
stretch: how much the finger has bent

» One for palm, measuring pressure
» The Sensor Computer powers these

sensors and measures the varying
resistance as a voltage value

* These sensors are red at 100 Hz
sampling frequency
(configurable 1 Hz — 1000 Hz)

& HitSeed

Advanced 6-axis
motion sensor

» Used for hand orientation and motion
gesture detection

» Accelerometer and gyroscope data
from the sensor is red at 104 Hz
sampling frequency

(configurable 1.6 Hz — 3333 Hz)

Steps of Classification

1. Configure sensors for sampling and set up filtering.
2. Set data scaling and normalisation parameters.

Raw sensor readings

} , . . .
vomatsaton | [§ 5 3. Combine several sensor inputs to a time series
] 52 buffer of values for Neural Network processing.
—— | 4. Load a TensorFlow model and feed the data buffers
/oW for embedded Neural Network classification:
f-ﬂ 1. Run Neural Network inference. Output is a list of
A v probabilities for the trained classifier alternatives.

g ~,.2§ Feature extraction with
LST™

l

2. Format the results and send over Bluetooth LE or
LTE data connections. Data is sent to a server, a
nearby computer or a VR/AR headset.

5. Alternatively collect the buffer data for offline
,i, supervised learning of a Neural Network classifier.
predeter Training data can be stored in a microSD memory
card or sent over the LTE connection.

Alejowal pessasold

& HitSeed

Step 1: Embedded Data Normalisation

Textile sensor measurements: bending all fingers first, then one or two fingers at a time.

Above: raw sensor data. Below: pre-processed and normalised for Neural Network processing.

& HitSeed

Sensor Data Fusion —-TensorFlow — Result

16 samples

ADC data from 6 textile sensors

Acceleration data: X, Y Z

Rotation data: X, Y Z

12 sensor values

A “fusion buffer” of 16 * 12 =
192 sensor values is processed
with TensorFlow every 160

milliseconds
The embedded calculation with the of the different DEBARE ‘
R&D networks took between 3ms and 70ms per prediction. i _
The network model of these example graphs uses on average Classme_r _result.
3.5 mW in continuous prediction of real-time data. pI’ObabI|ItIeS of

each pose or

& HitSeed Jesie

Access the Embedded Results from a PC

 The DEBARE Sensor Computer sends a classifier

result to Bluetooth LE every 160 milliseconds.

 Reliable and compatible (Windows, Mac, Linux)
way to read the Bluetooth datais to use a €10
USB dongle with Python scripts. Details and code

available from https://sc.hitseed.com.
* The Python script can

— read the data from Bluetooth,
— print the result in real-time,
— store the values to a .csv file or

— pass the data for processing the result with another TensorFlow
network (typically a LSTM) and print the results.

& HitSeed

python3 dongle/deb_output.py
--port=/dev/tty.usbmodemE8D77E923BE52
--verbose
--confidence=0.95

python3 dongle/deb_output.py
--port=/dev/tty.usbmodemE8D77E923BE52
--floats=6
--floats_from_byte=6

Classifier Results

The python script uses the USB dongle to receive the embedded classification as
a list of probabilities for each class. This Neural Network detected which finger(s)

in the glove were bent:

MAUULEG (£ Wiln LU LiusHUS

middle
middle
middle
middle
ring
index
index
index
middle
middle
middle

(2)
(2)
(2)
(2)
(1)
(€))]
(€))]
(€))]
(2)
(2)
(2)

.955999. Count 102 time 160.
.973683. Count 104 time 160.
.958899. Count 110 time 160.
with confidence 0.954333. Count 113 time 168.
with confidence 0.973238. Count 121 time 168.

with confidence @
0
0
0
0

with confidence 0.989785. Count 123 time 168.
0
]
0
]
a

with confidence
with confidence

with confidence 0.96906@0. Count 124 time 168.
with confidence 0.956673. Count 125 time 168.
with confidence 0.951222. Count 145 time 168.
with confidence 0.952437. Count 146 time 160.
with confidence @.993828. Count 15656 time 140.

The 160 millisecond
predictions as a graph:

HitSeed

pauny
pinky
pinky
pinky
pinky
pinky
pinky
pinky
pinky
pinky
pinky
ninkv

(0):
(0):
(0):
(0):
(0):
(0):
(0):
(0):
(0):
(0):
(a):

PTOOOOOOOOO®C

cvvvuuay
000006,
000004,
.000009,
.000002,
007492,
000000,
000000,
000000,
000001,
000004,
A0RAAA .

iy
ring
ring
ring
ring
ring
ring
ring
ring
ring
ring
Tina

(1):
(1):
(1):
(1):
(1):
(1):
(1):
(1):
(1):
(1):
(e

cvusmry
.035854,
.015074,
.031998,
.029310,
.973238,
.010195,
.030892,
.043282,
.045746,
.044090,
-A0AALS .

middle
middle
middle
middle
middle
middle
middle
middle
middle
middle
middle

(2):
(2):
(2):
(2):
(2):
(2):
(2):
(2):
(2):
(2):
(2):

rourvy,
.955999,
.973683,
.958899,
.954333,
.016171,
.000020,
.000048,
.000045,
.951222,
.952437,
.993R28.

index
index
index
index
index
index
index
index
index
index
indax

ring

Swra oy
(3): 0.004802,
(3): 0.002425,
(3): 0.003706,
(3): 0.011291,
(3): 0.003082,
(3): 0.989785,
(3): 0.969060,
(3): 0.956673,
(3): 0.002869,
(3): 0.003008,
(2): A.AAA12R.

thumb
thumb
thumb
thumb
thumb
thumb
thumb
thumb
thumb
thumb
thumh

Finger probabilities

4344 505152

index

(4):
(4):
(4):
(4):
(4):
(4):
(4):
(4):
(4):
(4):
(4):

5758

PTOOOOOOPOO®C

vuaiuy,
003325,
008795,
005366,
005060,
000001,
000000,
000000,
000000,
000160,
000454,
200000 .

ethumb emm=palm

pasm
[ERL
palm
[ERL
[ERL
[ERL
[ERL
[ERL
palm
[ERL
palm
LERL]

(5):
(N
(5):
(N
(5):
(5):
(5):
(5):
(6)
(6):
(5):

POOOOPOOOOO®C

vuvuiv,
000015,
000019,
000022,
000004,
000015,
000000,
000000,

.000000,
.000002,
.000006,
-A00000 .

DEBARE Hardware Uses Sensor Computer 2

c09cesd
®SoluoJidsyas

& HitSeed

Sensor Computer 2 (SC2) is the main product of HitSeed: the loT
“brains” used in several commercial products.

SC2 contains a microphone and an advanced motion sensor. It is
often attached to another board for added sensors and actuators.
SC2 runs the software that measures and sends data, it has
memory, non-volatile storage, programmability and it communicates
with Bluetooth LE and with LTE (4G) NB-IOT/CAT-M1.

SC2 weights 10 grams. It has several powering options including
primary and rechargeable batteries and energy harvesting. The
DEBARE device in idle mode uses only 304 uW — as a comparison
a Raspberry Pi Zero uses 400 mW in idle mode.

There is a smaller and lighter variant Sensor Computer 1 (SC1)
available for a smart glove in production, without the LTE data
connectivity. For R&D and for training data collection the larger SC2
variant with a memory card holder has been easier to use.

Programming the Sensor Computers

C (O @& sc.hitseed.com/user/pertti.kasanen@hitseed.com/lab

The HitSeed Sensor Computers
are configured using the Lua
script language. The Lua
programs can be updated to the
device over the air.

Tutorials of the Sensor Computer
programming are available in
https://sc.hitseed.com.

& HitSeed

File Edit View Run Kernel
+ c
m / readonly_tutorial /
Name
8 download
B example
A ADC.ipynb
BleCentral.ipynb
BleCharacteristics.ipynb
A Connecting.ipynb
Cron.ipynb
Debugging.ipynb
Intro.ipynb
MQTT.ipynb
RAW.ipynb

SensorComputers.ipynb

TimeSeries.ipynb

[Welcome.ipynb

oA Yeelight.ipynb

Tabs Settings Help

B + X

[[» m C Markdown v Python 3
Sensor Computer concept

HitSeed's Sensor Computers are a powerful hardware and software platform for creating
power efficient products for wearable and loT markets. Sensor Computers are a solution
optimized for small low-power devices that communicate wirelessly. Sensor Computer can
measure motion, orientation, location through proximity, temperature, humidity and air
pressure as well as measure analog (ADC) and digital inputs. Sensor Computers can also
have a programmable NFC tag and run multicolor LEDs. New sensors and peripherals can
be added easily. Local user interaction can either use the motion sensor and LED status
indications or use a smartphone application over a Bluetooth LE connection.

The Sensor Computer hardware and software platform can be incorporated into professional
loT sensors and Bluetooth beacons as well as into sports sensors, smart watches, wristlets,
amulets and toys. The created products can monitor and collect data, indicate alerts and
adapt to the environment based on sensor measurements. Products created with Sensor
Computer can process and store data locally. This local intelligence is used for local
decision making, for learning about the environment, for local forecasting and for saving
battery by storing and transmitting only relevant data.

Sensor Computers communicates wirelessly using either Bluetooth LE or LTE NB-IoT/CAT-
M1 cellular connectivity. SCs can connect with phones, tablets and gateways as well as with
iBeacons and other Sensor Computers. Sensor Computers can be reprogrammed Over The
Air (OTA) with scripts written in the Lua programming language. All the hardware and
software features have been made available as a Lua programming API. In R&D use a Signal
Computer can collect raw sensor data for offline algorithm development. The raw sensor
data can be processed in a PC and the algorithms developed can be compiled into the
Sensor Computer. A running Sensor Computer can be debugged wirelessly: low-level state
and variables can be monitored and modified while the Sensor Computer is installed in
difficult-to-reach location, is worn by a user or attached to a sports equipment.

Introduction

* Intro.ipynb is the best place to get started: It contains an introduction the Lua language
and how Lua programs are used in the HitSeed Sensor Computers.
If you have a SC2 sensor for testing these programs, read the tutorial Connecting.ipynb
that shows how to run programs and how to manage and test the connection to the
Sensor Computers from these Jupyter Notebooks. You can benefit from reading these
tutorials also without a sensor.
Debugging.ipynb explains functions and best practises for programming and testing
own Lua programs in a Sensor Computer

Training a TensorFlow .tflite Model

To collect the training data files and
to use the files to train a TensorFlow
model you should follow the steps in
the next few slides.

& HitSeed

Outline a typical development of a Machine Learning classifier

& HitSeed

Training Preparations

1. Toinstall a Python interpreter with
Tensorflow and Keras follow the
instructions from tensorflow.org

2. Login to http://sc.hitseed.com to
download the training scripts

3. More detailed instructions for NN
training and for Lua programming with
Sensor Computers are available in
http://sc.hitseed.com

& HitSeed

http://sc.hitseed.com/
http://sc.hitseed.com/

Training: Inspect and Clean Up Data

» Copy the training data files from a microSD to
python3 fusion_parse.py */* --plot_adc

your computer. Place the files in F thon3 fusion parce.by */* —-plot acc
subdirectories named as the pose or gesture python3 fusion_parse.py */* --plot_gyro
to be classified.

* You can later choose which subdirectories to
include in each training run.

* Inspect the files one by one by plotting the
contents with commands like on the right.

» Verify what data you want to include in the
training. Move misplaced files to correct
subdirectories and remove any undesired
files. The script can also remove samples
from the beginning and from the end.

& HitSeed

Adc: pinky/F65.DAT

Training: Prepare Data for Training

Convert the verified fusion buffer binary files

as .csv files in the directory specified as the
--csv_to dir argument.

If needed, split the files with
--csv_split=<numberoflines> to get at
least ten .csv files for each pose/gesture.

Run these training data preparation scripts.
List the subdirectory names you want to
include in this training. The order of the
directories has no impact here.

Rerun these last two commands for changing
the subdirectories included for training.

& HitSeed

python3 fusion_parse.py */* --csv_to_dir=../csv
--csv_split=1000
cd ../csv

python3 ../../train/data_prepare.py --inputs=12
index middle palm pinky ring thumb

python3 ../../train/data_split.py index middle
palm pinky ring thumb

Training: Run the TensorFlow Training

» Use the train.py script from http://sc.hitseed.com for
TensorFlow training. :
python3 ../train.py

* train.py uses the learning/validation/test data prepared with --model=CNN_ADC

data_split.py ——sample3=166
--cnn_nodes=

* Please refer to Tensorflow documentation about the ——dro : npUte
- . pout_input=0.2
parameters like learning rate, epochs and dropout e el
paranweters. --learning rate=0.001
* In the command line list the same subdirectories for training --steps_per_epoch=5000
as in the previous page. The order of the category names --epoch=20 _
here defines the category order in the output. gy sl el e By el

* As a starting point we recommend using Keras for
describing the network to train. It is possible to use also all
other forms that TensorFlow can convert to a .tflite model.

» When the TensorFlow training run is successful it will store
in the current working directory a .tflite file optimised for
embedded execution.

& HitSeed

http://sc.hitseed.com/

Easy Start Without Embedded Programming

HitSeed creates ready made data
aggregations designed for classifier
training and execution.

We call this feature classformation
(CFORM): Information about the
sensor data aggregated to a form that
is optimised for classifier training.

& HitSeed

CFORM Example from the DEBARE Data

These graphs illustrate only the ADC ‘“finger” part of the DEBARE data
Reduction to

3/16 = 19% of the
original data size

CFORM

TensorFlow TensorFlow
(1,16,12,1) (1,1,12,3)

& HitSeed

Classformation for Gestures and Poses

» The first CFORM feature CFORM/Gesture is developed for classifiers of
dynamic human gestures and static poses.

» We take 16 samples of sensor data and calculate three numbers that represent the
same information in more compact form.

— The aggregate data is 19% in size and compact enough to be transferred over
Bluetooth LE connection in real-time.

— The new CFORM data can be saved to a microSD card for training data collection.
Alternatively the training data files can be collected in real-time in a PC with a USB
dongle.

— A separate Neural Network classifier can be run in a PC or a mobile phone that
consumes the real-time CFORM data sent from a Sensor Computer over Bluetooth LE.

& HitSeed

CFORM/Gesture Data Visualised

16 samples continuous flow of “1 sample”
TensorFlow TensorFlow
(1,16,12,1) (1,1,12,3)

CFORM

: “1 sample” every160 milliseconds.
A “Fusion Buffer” of 16 * 12

sensor values every 160

= A window of 16 new samples fills every
milliseconds

2.56 seconds.

19% of the original data size with better
signal/noise ratio for gesture detection.

$ &

Usually better classifier results from CFORM data, with less memory and power consumption.

& HitSeed

Training Classifiers for the CFORM/Gestures

 Easiest way to start training classifiers with HitSeed Sensor Computers is to
take a SC configured for sending the CFORM/Gestures data to Bluetooth.
— Use a USB dongle and Python scripts to collect CFORM training data to a PC.
— Train a TensroFlow classifier using the collected compact CFORM data.

— Load the trained TensorFlow model with the dongle-reader Python script running
in the PC and test the NN model against the real-time data received over
Bluetooth.

* The current version of the TensorFlow Lite Micro cannot yet run LSTM
networks. When RNN-type networks or subgraphs are used for in
classification, currently this kind of split setup is needed where the more
complex classifier runs in a PC or a mobile phone.

& HitSeed

Embedded Use of CFORM/Gestures

 The CFORM outputs can be sent for embedded TensorFlow inference from the

Lua code. Up to 2.56 second gestures could be classified with a 16-sample CNN in
the Sensor Computer.

« The CFORM transformation helps reducing the memory footprint of the classifier
model as well as the RAM memory needed for TensorFlow Arena. The calculation
speed and the power consumption improves — allowing more complex embedded
NN topologies.

« If the trained NN uses only a fully connected or a CNN network and has
<3000 trainable variables, it can be downloaded to the Sensor Computer and run
the classifications fully locally.

« The CFORM model makes it easy to start training classifiers with full TensorFlow
functionality — and the gradually trim the complexity of the model to find out how
many separate gestures can be reliably classified in embedded-only
implementation.

& HitSeed

» www.hitseed.com/platform
* info@hitseed.com

HITSEED.COM

